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Abstract—Sulfoxide and sulfone intermediates 7 and 15, respectively, were employed to synthesize synthons 3 and 4, which are
readily converted to the naturally occurring (2S,3R,4(E))-sphingosine 1 and (2S,3R)-sphinganine 2. © 2002 Elsevier Science Ltd.
All rights reserved.

Sphingolipids have been implicated in a vast variety of
physiological functions but are not readily obtained
from natural sources in homogeneous form.1 Therefore,
there is a great demand for chemical methods that
provide sphingolipids in sufficient amounts and high
chiral purity for use in biological and biochemical
studies. Since the first report of the synthesis of racemic
sphingosine in 1951,2 many different methods have
been employed for the chemical synthesis of naturally
occurring (2S,3R)-sphingosine (1a, Chart 1)3 and sphin-
ganine (2).4 However, because of the need to generate
two stereogenic centers with high stereoselectivity, as
well as an (E)�C(4)�C(5) double bond, most of the
synthetic procedures are quite lengthy. An efficient
synthetic route to D-erythro-sphingosine (1a) in only

four steps (two of which take place in one pot, with no
intermediate being isolated) is reported here that
involves the use of �-keto-sulfoxide or sulfone interme-
diates for C�C bond formation. The latter have not
been previously used for the preparation of sphin-
golipids, even though the reactions of sulfur-containing
carbanions have been used extensively in organic syn-
thesis.5 Our method provides facile access to synthon 3
from L-serine methyl ester derivative 5; synthon 4 is
readily obtained in only three steps from L-serinal
derivative 12. It has previously been shown that syn-
thons 3 and 4 afford naturally occurring D-erythro-sph-
ingosine 1a and D-erythro-sphinganine (2).6,7

The synthesis of 1a began with the reaction of L-serine-
derived N-Boc-oxazolidine methyl ester 58 with an alkyl
phenyl sulfoxide (6) (Scheme 1). Sulfoxides 6a,b were
prepared in high yield by the reaction of thiophenol
with (a) n-pentadecyl bromide or (b) n-heptyl bromide
in the presence of Li2CO3 in DMF, followed by brief
treatment of the resulting sulfide with MCPBA in
CH2Cl2 at −78°C.9 Nucleophilic addition of the anion
of sulfoxide 6a,b (2 equiv.) to ester 5 gave sulfoxide
intermediates 7a,b,10 which were not isolated. On heat-
ing in CCl4 overnight, 7a,b afforded enones 3a,b in 36
and 50% overall yield, respectively.11

�-Ketosulfoxide 8 was prepared in 70% yield from 5 by
using 2 equiv. of the carbanion of methyl phenyl sulfox-
ide (Scheme 1). Attempts to carry out the C-alkylation
of 8 with long-chain alkyl halides mediated by different
bases have not been successful. When a strong base
such as NaH or t-BuOK in THF was used, O-alkyl-
ation was the major reaction, providing enol ether 9.

Chart 1.
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Scheme 1. Synthesis of sphingosine 1a via sulfoxide 6 and enone 3.

When a relatively weak base such as Cs2CO3 or K2CO3

in DMF or DBU in benzene was used, the yield of 7a
was low.

The synthesis of sphingosine from 3a was completed in
two steps. Diastereoselective reduction of 3a (NaBH4,
CeCl3, MeOH, −15°C) provided alcohol 10 in 72% yield
(Scheme 2).6,12 Hydrolysis of 10 (1 M HCl, dioxane,
100°C) afforded D-erythro-sphingosine (1a), which was
characterized as the triacetate derivative 11.13

As depicted in Scheme 3, the preparation of synthon 4
began with N-Boc-oxazolidine L-serinal 12.8 Reaction
of methyl ester 5 with 2 equiv. of the anion of n-pen-
tadecyl phenyl sulfone (13)14 gave a low yield of �-keto-
sulfone 15; furthermore, it was difficult to separate
product 15 from starting sulfone 13. Therefore, sulfone
intermediate 14 was prepared by addition of the anion
of sulfone 13 to aldehyde 12. Oxidation of alcohol 14
(PCC, rt) provided �-ketosulfone 15 in 82% yield.15

Aluminum amalgam16 was used to effect the desulfonyl-

Scheme 2. Conversion of enone 3a to sphingosine 1a.

Scheme 3. Synthesis of ketone 4, a precursor of 1a and 2, via �-ketosulfone 15.
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ation of �-ketosulfone 15, affording ketone 4 (85% yield),
which has been used to prepare enone 3a and sphinganine
2.6

Scheme 3 also shows that direct addition of the carbanion
derived from 2 equiv. of methyl phenyl sulfone to ester
5 gave sulfone 16,17 which was alkylated with n-tetra-
decyl iodide, providing an alternative route to �-ketosul-
fone intermediate 15.

In summary, the sphingoid base of the naturally occur-
ring lipids 1 and 2 has been conveniently synthesized
from the commercially available L-serine-derived syn-
thons 5 and 12 by employing �-keto-sulfoxide and
sulfone intermediates 7 and 15. The S configuration of
the stereocenter at C-2 in products 1 and 2 is derived from
the configuration at C-2 of L-serine. Diastereoselective
reduction of enone 3 provides the requisite R configura-
tion at C-3 of D-erythro-sphingosine (1), as demonstrated
by the agreement of the specific rotation of triacetate
derivative 11 with literature values.13 This practical
method can be applied to the construction of sphingoid
bases containing a modified aliphatic chain.18 This
approach is well suited to the preparation of isotopically
labeled sphingoid bases derived from commercially avail-
able labeled serine.19
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